SYLLABUS - A COURSE DESCRIPTION

I. General information

- 1. Course name: Artificial intelligence
- 2. Course code: Al
- 3. Course type (compulsory or optional): compulsory
- 4. Study programme name: Language, Mind, Technology
- 5. Cycle of studies (1st or 2nd cycle of studies or full master's programme): 2nd cycle
- 6. Educational profile (general academic profile or practical profile): general academic
- 7. Year of studies (if relevant): second
- 8. Type of classes and number of contact hours (e.g. lectures: 15 hours; practical classes: 30 hours): lecture: 30h lecture, 30h practical classes
- 9. Number of ECTS credits: 6
- 10. Name, surname, academic degree/title of the course lecturer/other teaching staff: Kacper Łodzikowski, MA; klodziko@amu.edu.pl
- 11. Language of classes: English
- 12. Online learning yes (partly online / fully online) / no: no

II. Detailed information

1. Course aim (aims):

This course will prepare you for conducting Research & Development (R&D) projects that apply methods from the field of Artificial Intelligence (AI). You will be able to apply these knowledge & skills both in the academia and in business.

The course consists of the following main parts:

- Acquire the knowledge of the basic terms used in the broad field of AI, as well as the history of the field and the state of the art.
- Acquire the knowledge about the inner workings of the most popular machine learning algorithms as well as the technologies and processes used for working with them.
- Acquire the skills needed to create and present an AI R&D project proposal as well as to lead individual or teamwork in such a project.
- Acquire the knowledge & skills that will increase your chance of getting hired and succeeding in the field of AI R&D.
- 2. Pre-requisites in terms of knowledge, skills and social competences (if relevant):
 - Proficiency in English
 - Ability to search for and synthesise information
 - Basic proficiency in at least one programming language
 - Basic knowledge of mathematical analysis and statistical analysis
- 3. Course learning outcomes (EU) in terms of knowledge, skills and social competences and their reference to study programme learning outcomes (EK):

Course learning outcome symbol (EU)	On successful completion of this course, a student will be able to:	Reference to study programme learning outcomes (EK)
SI-01	Knows the basic terms used in the field of Artificial Intelligence (AI).	K_W04
SI-02	Knows the history of the field of AI. Knows modern practical applications of AI and their socio- economic challenges.	K_W05
SI-03	Thas a general knowledge of the inner workings of the most popular	K_W07, K_W09, K_W11, K_W13

	working with them.	
SI-04	Has a general knowledge of conducting AI Research & Development (R&D), including agile software development.	K_W08
SI-05	Can create an AI R&D project proposal.	K_U03, K_U04, K_UO7, K_UO19
SI-06	Can present an AI R&D project proposal to a wide target audience and defend his/her position.	K_UO09, K_UO13
SI-07	Is ready to manage his/her own AI R&D work as well as the work of a team.	K_K04, K_K05, K_K11
SI-08	Is ready to follow and share with others the best practices for working with AI.	K_K09, K_K10
SI-09	Is ready to self-assess his/her knowledge and skills as well as to develop them according to professional requirements.	K_K01

4. Learning content with reference to course learning outcomes (EU)

	outcome symbol (EU)			
Introduction to Artificial Intelligence (AI): basic terms, history of the field, disciplines that contributed ideas and methods to AI	SI-01, SI-02			
State of the art and practical applications of AI in science and business				
Socioeconomic challenges (e.g. discrimination and increasing inequality, human error vs. machine error, job losses, carbon footprint)	SI-02, SI-08			
Machine learning approaches (supervised, semi-supervised, unsupervised, reinforced, active)				
Most popular problems solved with machine learning (regression, classification, clustering, anomaly detection, time series analysis)				
Machine learning model life cycle (data collection, data labelling, data & code versioning, data exploration & visualization, model training, inference)				
Most popular machine learning algorithms (linear regression, logistic regression, naïve Bayes classifier, support vector machine, decision trees and random forests, gradient boosting, <i>k</i> -nearest neighbours, <i>k</i> -means, probabilistic graphical models)				
Deep learning (artificial neural networks: feedforward, recurrent, convolutional, LSTM)	SI-03			
Natural language processing: normalisation, n-gram models, sentiment analysis, vector semantics & embedding, neural language models, machine translation, written language generation, speech recognition and synthesis, automated scoring of spoken & written language)				
Practical aspects of model operationalisation (deployment, monitoring, scaling, managing data life cycle)				
Cloud data processing and machine learning (advantages & disadvantages, providers, practical considerations, e.g. best virtual machines for a given problem)				
Creating in-house models vs. reusing existing ones, incl. managed cloud services				
Legal aspects of R&D in Poland; intellectual property and patents				
AI R&D project life cycle; frameworks for managing such projects (e.g. TDSP)				
Agile software development methods (Scrum, Kanban), as used in the field of Al				
Practical challenges and most common mistakes in AI R&D projects				
Formal and informal requirements for model transparency in selected industries	SI-04, SI-07, SI-09			
Legal aspects of data processing (GDPR, RODO, problematic cases)				
Managing R&D personnel (researchers, machine learning engineers)				
Administrative aspects of R&D in Poland (employment type, creative work, 50% revenue- earning costs)				
Industrial visit (AI R&D unit)				
Critical analysis of example R&D projects (in science and business)	SI-05, SI-06, SI-07, SI-			
Presentation techniques for R&D project proposals (in science and business)	08, SI-09			

5. Reading list:

- Almond, Russell, Robert Mislevy, Linda Steinberg, Duanli Yan and David Williamson. 2015. *Bayesian networks in educational assessment*. New York: Springer.
- Davis, Ernest and Gary Marcus. 2019. *Rebooting AI: Building artificial intelligence we can trust.* New York: Pantheon Books.
- Jurafsky, Daniel and James H. Martin. In press. Speech and language processing: An Introduction to natural language processing, computational linguistics, and speech recognition. (3rd edition) (web.stanford.edu/~jurafsky/slp3/) (date of access: 1 April 2021).
- Kochenderfer, Mykel J., Tim A. Wheeler and Kyle H. Wray. In press. *Algorithms for decision making*. (algorithmsbook.com) (date of access: 1 April 2021).
- Page, Scott E. 2018. The model thinker: What you need to know to make data work for you. New York: Basic Books.
- Russell, Stuart and Peter Norvig. 2021. *Artificial intelligence: A modern approach*. (4th edition.) Hoboken: Pearson.
- Silver, Nate. 2015. The signal and the noise: Why so many predictions fail--but some don't. New York: Penguin Press.
- Yan, Duanli, André A. Rupp and Peter W. Foltz (eds.). 2020. *Handbook of automated scoring: Theory into practice*. Boca Raton: CRC Press.

III. Additional information

 Teaching and learning methods and activities to enable students to achieve the intended course learning outcomes (please indicate the appropriate methods and activities with a tick and/or suggest different methods)

Teaching and learning methods and activities	X
Lecture with a multimedia presentation	Х
Interactive lecture	Х
Problem – based lecture	Х
Discussions	Х
Text-based work	Х
Case study work	Х
Problem-based learning	
Educational simulation/game	
Task – solving learning (eg. calculation, artistic, practical tasks)	
Experiential work	Х
Laboratory work	
Scientific inquiry method	
Workshop method	
Project work	Х
Demonstration and observation	
Sound and/or video demonstration	Х
Creative methods (eg. brainstorming, SWOT analysis, decision tree method, snowball technique, concept maps)	Х
Group work	Х
Other (please specify) -	

2. Assessment methods to test if learning outcomes have been achieved (please indicate with a tick the appropriate methods for each LO and/or suggest different methods)

Assessment methods	(Course learning outcome symbol				
Written exam						
Oral exam						
Open book exam						
Written test	SI- 01	SI- 02	SI- 03	SI- 04		
Oral test	SI- 03	SI- 04	SI- 05	SI- 06	SI- 07	SI- 08
Multiple choice test	SI- 01	SI- 02	SI- 03	SI- 04	SI- 07	SI- 08
Project	SI- 05	SI- 06	SI- 07	SI- 08	SI- 09	
Essay	SI- 05					
Report	SI- 09					
Individual presentation	SI- 06					
Practical exam (performance observation)						
Portfolio						
Other (please specify) -						

3. Student workload and ECTS credits

Activity types		Mean number of hours spent on each activity type
Contact hours with the teacher as specified in the study programme		60
	Preparation for classes	15
dy*	Reading for classes	15
Independent study*	Essay / report / presentation / demonstration preparation, etc.	20
pend	Project preparation	30
Inde	Term paper preparation	
	Exam preparation	

	Other (please specify) – Midterm test preparation	10
Total hours		150
Total ECTS credits for the course		6

* please indicate the appropriate activity types and/or suggest different activities

4. Assessment criteria in accordance with AMU in Poznan's grading system:

Very good (bdb; 5,0): Good plus (+db; 4,5): Good (db; 4,0): Satisfactory plus (+dst; 3,5): Satisfactory (dst; 3,0): Unsatisfactory (ndst; 2,0):